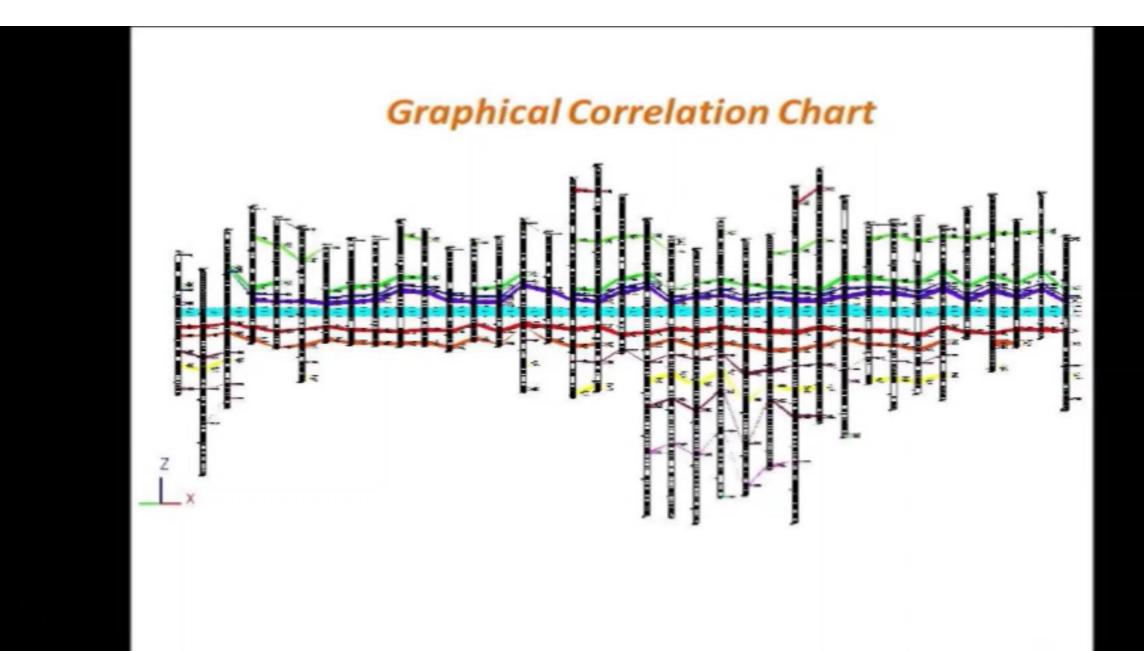


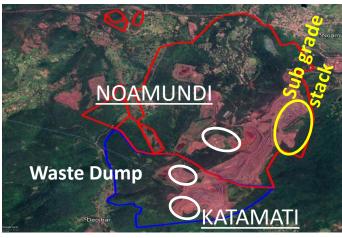
Digital Mine Mapping & Monitoring using drones


Webinar: Geospatial Technology supporting sustainable mandate towards digital infrastructure of mining

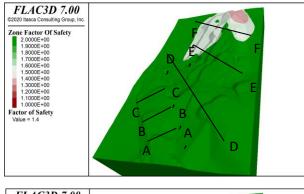
Chief – Natural Resources Division 19th October 2023

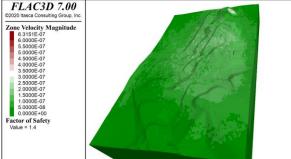
Mine Planning Process

Geology & Resource Modelling

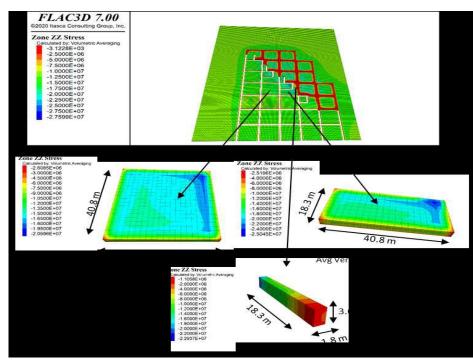


Technical Studies for Mine Planning


Topographical study


Geotechnical Study

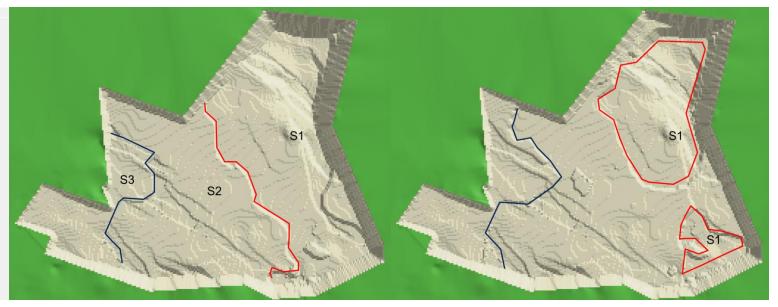
Hydrogeological Study Surface Constraint Study


Noamundi Sub-grade Dump - Results

FoS 1.4

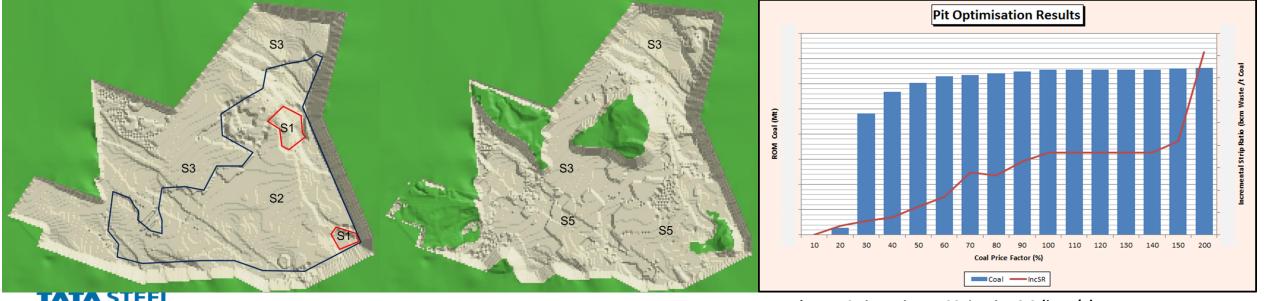
Underground roof and side stress mapping using numerical modeling

Parameter	Result
Density (g/cc)	2.209
Cohesion (Pa)	9830
Friction (°)	32
Dilation	2


Pit Optimization

General Seam Defaults & Sale Value Slope Cost & Area Limits

-Select a Mod

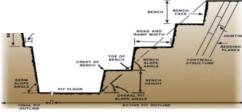

Grid Directories, Defaults, Suffix	es & Cutoffs		Slope Factors & Mining Costs—		
New Parameter File Name	MRCOPN.mnx	Browse	Minimum Seam Thickness (m)	0.30	
Log File Name	MRCOPN.log	Browse	Pit Recovery (%)		
Structural Model	MODEL.ard	Browse	Pit Slope (degrees)		C Advance
Quality Model		Browse	Z Sub-Blocks (max = 8)		
			Minimum Mining Width (m)	0	
	MODEL.grd	Browse	Waste Mining Cost (\$/bcm)	2.00	🔲 Seam Defaults
Topography Grid	TOPS100	Browse	Waste Lift Cost (\$/bcm/m)	0.001	
Weathering Grid	WSF	Browse	Waste Exit Elevation (m)	100	
Base Grid	WGG2SF	Browse	Waste Mining Cost Grid Suffix	WM	
Seam List (.B35)	THEDON.B35	Browse	Coal Mining Cost (\$/bcm)	5.00	🔲 Seam Defaults
Geometry File (.GM3)	THEDON.GM3	Browse	Coal Lift Cost (\$/bcm/m)		
Densitv Grid Suffix			Coal Exit Elevation (m)		
Density Grid Default			Coal Mining Cost Grid Suffix		
Washerv Yield Grid Suffix			Coal Wash Cost (\$/feed tonne)	5.00	
Washery Yield Default (%)			-Discount Factors & Output G	rid Profix	Report Point-
Quality Grid Suffix			Start Discount Factor		X 10000
Sale Value/Quality Unit (\$/unit)			End Discount Factor	.00	Y 12000
Quality Grid Default			Discount Step 0	.10	Dia
Quality Grid Cutoff	18.00		Output Grid Prefix	PT	Dig

Input Parameters

FF @ 150%

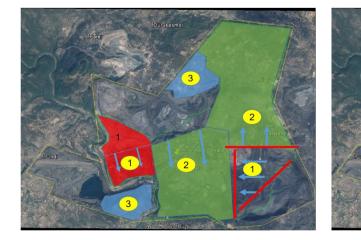
WeAlsoMakeTomorrow @ 70%

FF @ 30%


Break Even Strip Ratio at 100% FF is 18.3 (bcm/T)

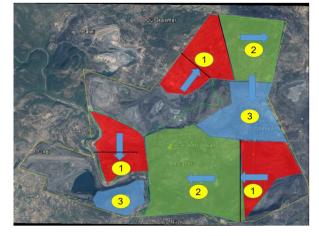
Mine Design

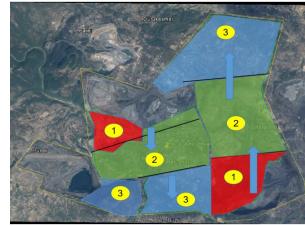
UPL Design Parameters										
Bench height	12 m									
Individual Bench Slope	75°									
Berm Width	10 m									
Overall Pit Slope	45°									
Haul Road Width	40 m									
Haul Road Gradient	1 in 16									


Dump Design Parameters										
Max Dump height	90m above OGL									
Max height per lift	30 m									
Individual Bench Slope	37°									
Berm Width	30 m									
Overall Dump Slope	22°									
OB Swell Factor	1.25									

Parameter for Conversion of In-situ to ROM Reserves										
Description	Units	Factor Applied								
Global Loss	%	10								
Roof Loss	m	0.07								
Floor Loss	m	0.07								
Roof Dilution	m	0.05								
Floor dilution	m	0.05								
Minimum Coal mining thickness	m	0.6								

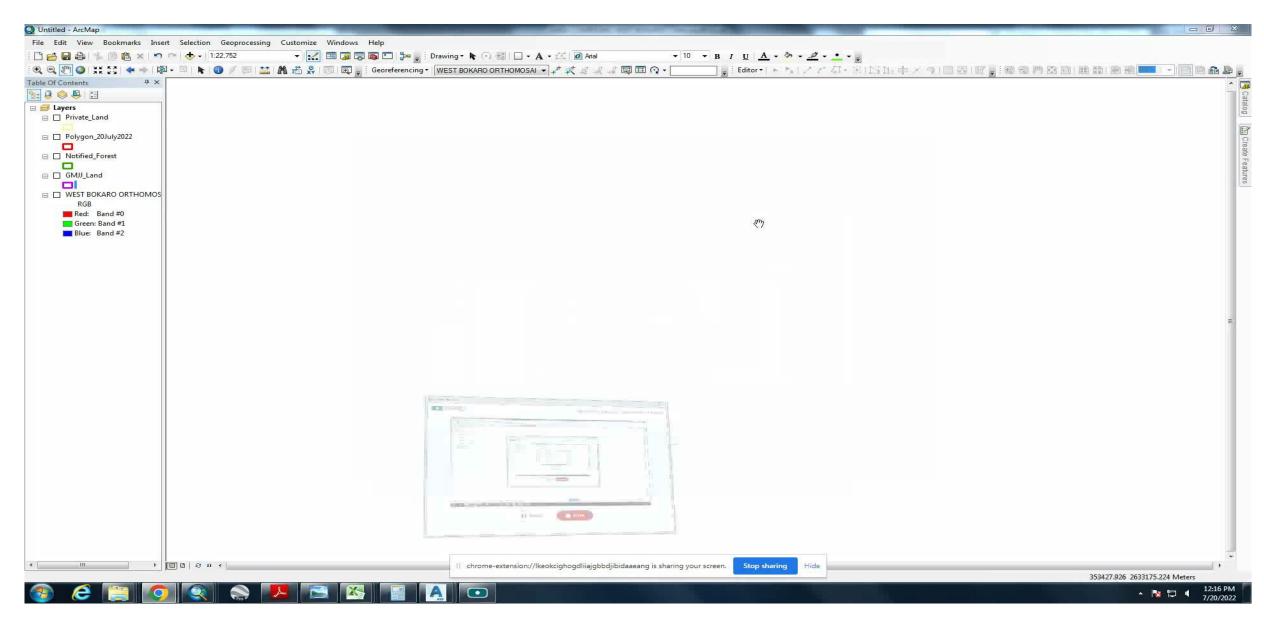
SECTVIA Miniextud - Granitics (Graphics 1) - £ 8 The Edit Graphics, Nounts Point String Grap Triangle Survey Biorentabilis Coal Washammy Seemilludel OFDesign OPReserveeDE OP Schedulette OP Dump Schedule: US Design US Feserves US Schedule Best Leca EarthWinds, SpoReguede Tools Windows Hep-《田原同》即是这个人之代之后,我们不是在小月后来最近**天代,**一年至30万米大人之后,有些""" B D Û 3D Design Dratting Visualization Scheduling Azimuthi 0 🚔 Dip 90 🚔 Tit: | 0 🚔 Z-Amp: | 1 Select String Graphics [Graphics 1] Explorer [Project WB PPT 072022] 53 🗄 🗐 Open_Pt_Engineering_Files Files 24x7.ACAL 24x7.BCAL 24x7.BCAL A.DSQ A DSG ADSG ADSG ADSG ADSG ADSG ADSG BENCH LST,pg CODES MN CODES MN CODES MC CODES MC ADSGNC ADSGN A PIT FOR PPT.tr5 A PIT11.tr5 M PIT_FOR_SCHEDULE.tr5 PIT_PPT.bls T / PPT.dbr ₩ PPT.mpf PPT_olc PPT_tais PPT_cODES_OMC PPT_CODES_OMC PPT_WB.dbs PPT_WB.dbs Parameters.mpf SUMTOTAL.tr5 > Project WB PPT 072022 III Runtime II Filesystems ¥ 12 19 %= 10 10


Long Term Development Strategy & Sequence


Sequence – I

Sequence – II

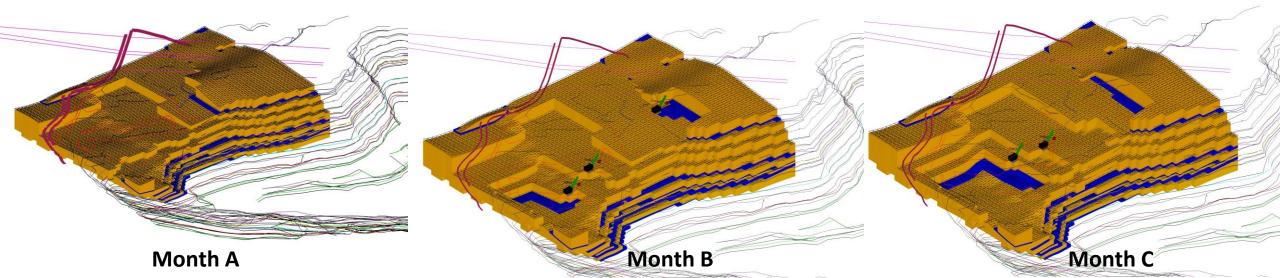

Sequence – III


Sequence – I	V
--------------	---

Seq II	Seq IV	Sequence	Rate	Dumping	Complexity	Wash/Banj	Score	Rank
		1	3	4	3	4	14	5
Mine Life of 26 years	Mine Life of 29 years	2	4	3	5	3	15	2
Waste varies 60-70Mbcm/yr	Waste peaks at ~60 Mbcm/yr	3	4	3	4	2	13	7
ROM peaks at 20 MTPA for 16 yrs	ROM peaks at 18.5 MTPA for 14 yrs	4	5	4	4	5	18	1
		5	3	4	4	4	15	2
Clean coal at 9.6 MTPA	Clean coal at ~ 9.0 (8.85) MTPA	6	3	5	4	3	15	2
No new rehandling of Expit waste	18 Mbcum of new rahndling of expit	7	3	4	4	3	14	5
Opex: Rs	Opex: Rs :	8	5	2	2	3	12	8
		9	3	3	3	3	12	8

Preparation of Long Term Plans

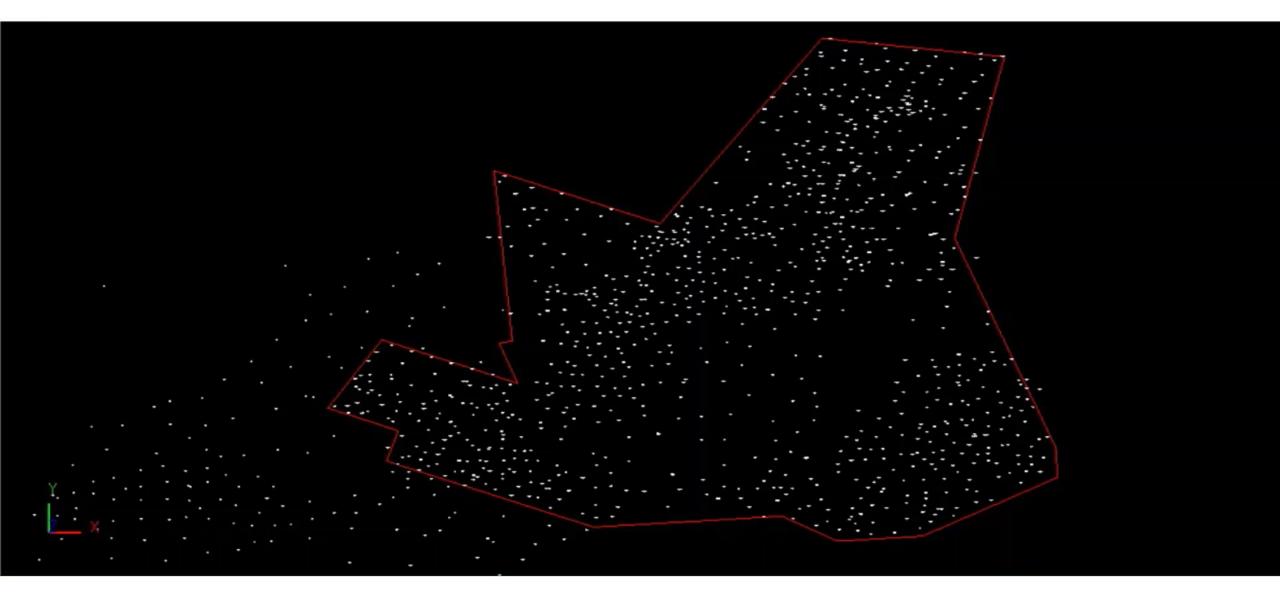
Georeferencing of ABP area over Cadastral Plan


Short Term Planning

Short Term Planning (Quarterly/Monthly/Weekly Plan)

Scheduling Scenario Outputs & Face Positions:

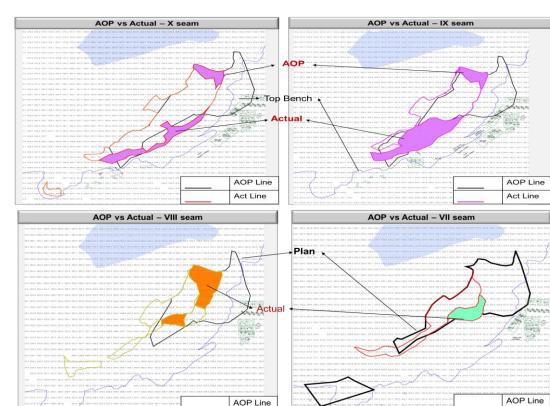
Schedule Number	Pit Number	Layer Name	Waste Volume	Coal Tonnes	Stripping Ratio
2	333	S11OB	22347.6	0	
2	333	S11C	0	7053.2	
2	333	S10OB	1102239.6	0	
2	333	S10C	0	165037.4	
2	333	S9OB	201392.4	0	
2	333	S9C	0	58133.9	
2	333	S8OB	53976	0	
2	333	S8C	0	93599	
Grand Total			1379955.6	323823.5	4.26


Remote Monitoring through Cloud Platform

Mine and Stock Management System

Login success

Remote Monitoring through Integration of Minex & Drone applications

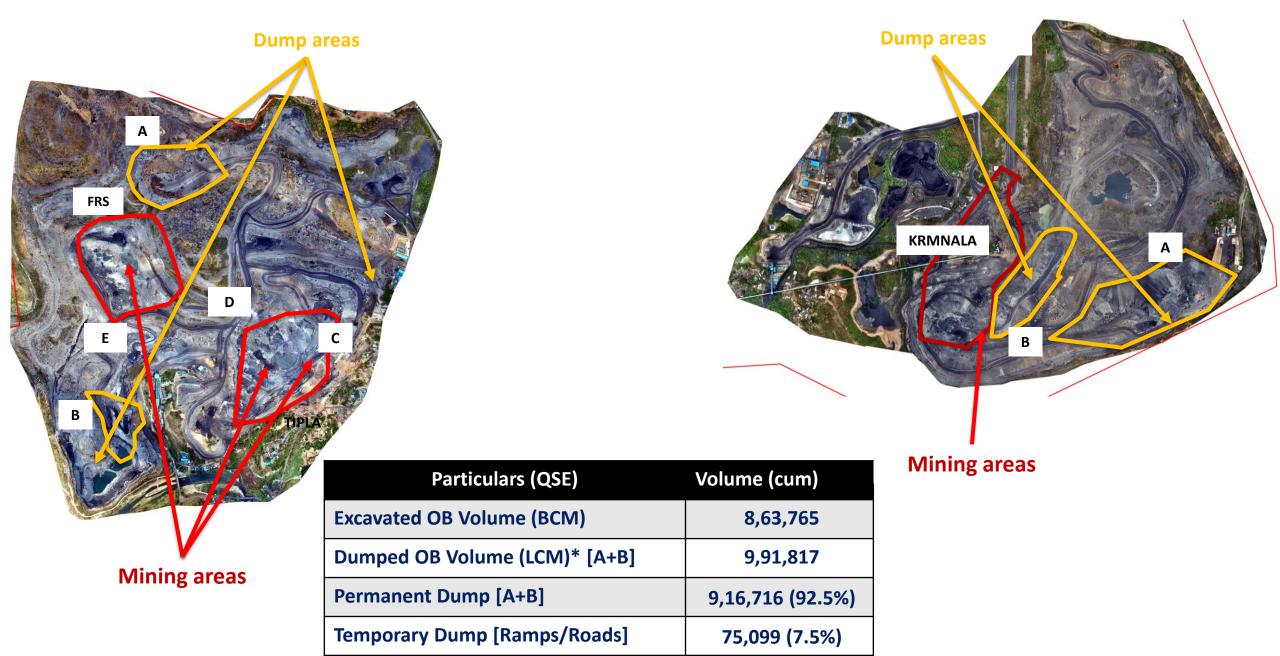


Spatial Compliance (Plan Vs Actual)

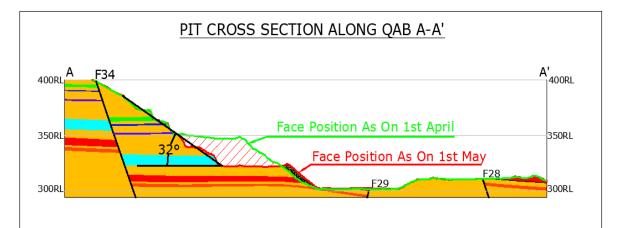
Rolling Plan & Projections for Annual Target

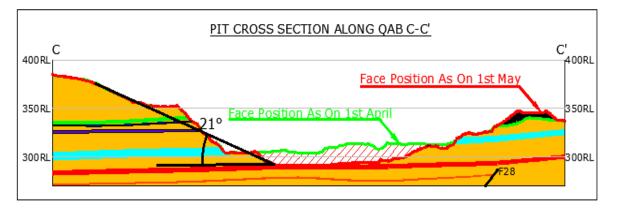
								<u> </u>		-																	
Description		Ар	oril	Ma	ay	Ju	ne	Jı	ıly	Aug	gust	Septe	ember	Oct	ober	Nove	ember	Dece	mber	Jan	nuary	Febr	uary	Ма	arch	Ye	ar
Desc	nption	Plan	Actual	Plan	Actual	Plan	Actual	Plan	Actual	Plan	Actual	Plan	Actual	Plan	Rev	Plan	Rev										
	QAB	11.25	11.20	12.64	12.52	12.71	12.83	10.51	14.56	9.38	10.94	9.64	10.36	9.96	10.80	9.96	10.80	9.96	10.80	9.96	11.00	10.03	11.50	10.03	11.96	126.04	139.27
Over Burden	QSE	3.69	3.66	3.30	4.04	6.37	6.76	8.10	8.36	10.72	10.05	10.80	10.65	10.80	10.84	10.80	10.85	10.80	11.00	10.80	11.00	10.76	11.00	11.70	11.00	108.64	109.21
	Total (OB)	16.34	14.87	15.94	16.16	19.08	19.59	18.61	22.92	20.10	20.99	20.44	21.01	20.76	21.64	20.76	21.65	20.76	21.80	20.76	22.00	20.79	22.50	21.73	22.96	236.08	248.09
	Total QAB	2.30	2.31	2.30	2.57	3.04	3.07	2.90	2.92	2.80	2.76	2.80	2.91	2.80	2.90	2.40	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.45	31.34	31.89
Raw Coal	Total QSEB	0.80	0.82	0.70	0.68	0.90	0.89	1.60	1.58	1.30	1.03	1.54	1.52	3.11	3.28	3.36	3.35	3.36	3.40	3.28	3.30	3.00	3.15	3.30	3.30	26.25	26.30
	Total RC	3.10	3.12	3.00	3.25	3.94	3.96	4.50	4.50	4.10	3.79	4.34	4.43	5.91	6.18	5.76	5.85	5.86	5.90	5.78	5.80	5.50	5.65	5.80	5.80	57.59	58.23

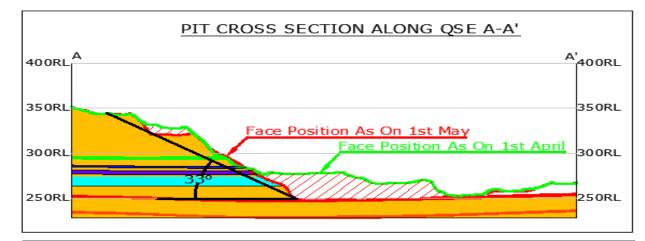
					Sep	•			ΥT	D
КРІ	KPI's	UoM		Rolling		Comp	liance			Comp
			ABP	Plan	Actual	With ABP	With Rev Plan	ABP	Actual	With ABP
	Clean Coal	LT	2.14	2.09	2.17	101%	104%	12.48	12.37	99%
	Raw Coal	LT	4.34	4.4	4.23	97%	96%	25.39	25.59	101%
	Solid OB	L CuM	18.64	18.5	18.78	101%	102%	91.75	87.71	96%
	Loose OB	L CuM	1.81	2	2.22	123%	111%	18.77	19.64	1 05 %
Р	Total OB	L CuM	20.44	17	21.00	103% 124%		110.51	107.35	97%
	Middling Coal	g LT 0.94 0.95		0.96	102%	1 0 1%	6.32	6.65	105%	
	RC Exposure	LT	2	2	2.23	112%	112%	2.00	2.23	112%
	CC Stock	KT	15	15	29.74	198%	198%	15.00	29.74	198%
Q	CC Disp Ash	%	18.50%	18.50%	18.60%	1 0 1%	10 1%	18.50%	18.60%	100.54%
y	CC Disp Moist	%	10%	10%	9.59%	96%	96%	10%	9.59%	95.90%
С	Clean Coal	CPT	3884	4027	4612	119%	11 9 %	3700	4629	125%
	CC Disp	LT	2.14	1.78	2.01	94%	113%	12.48	12.23	<mark>98%</mark>
	Midd Disp	LT	0.94	0.6	0.64	68%	106%	6.32	6.72	106%
D	Tailing Sale	LT	0.5	0.5	0.52	10 4%	1 04 %	3.38	3.18	94%
	Reject Sale	LT	0.45	0.45	0.42	94%	94%	3.13	3.93	126%

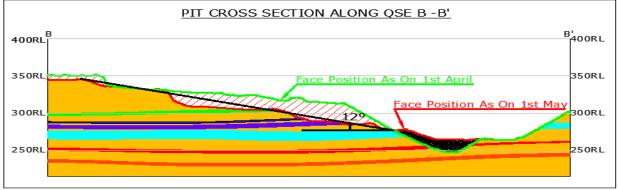

Area Compliance

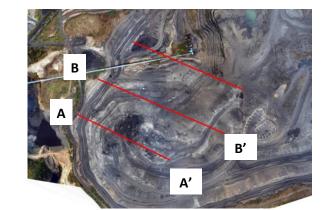
Act Line

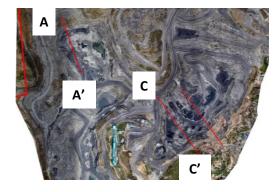

Act Line

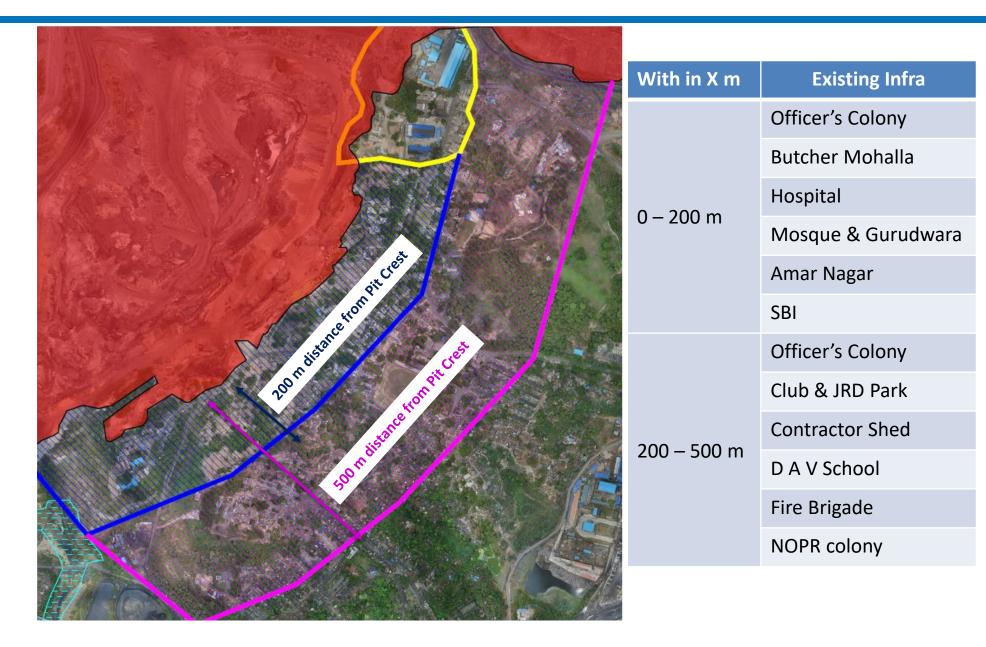

Performance Monitoring on PQCD


Dump Compliance (Plan Vs Actual)




Depth Compliance (Plan Vs Actual)

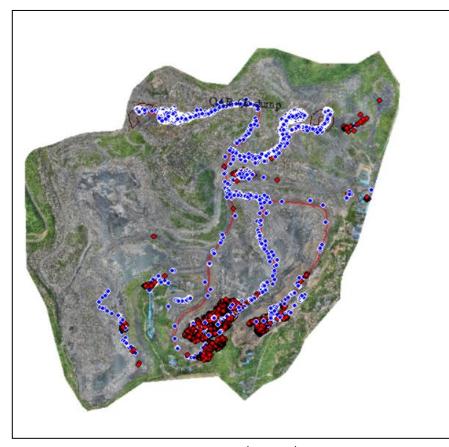




Recommended pit profile

Surface Infra with in 200 & 500 m from working pit

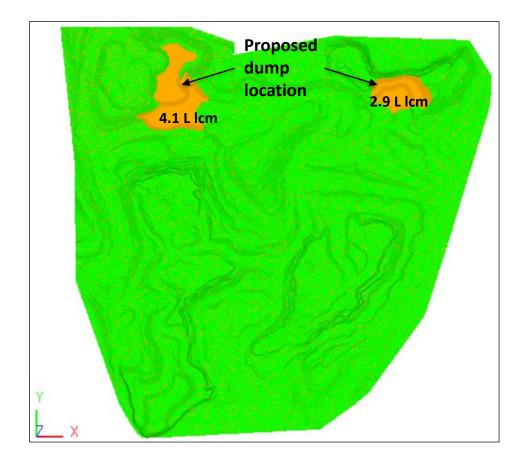
Excavation Volume in Sep'23 – NRD

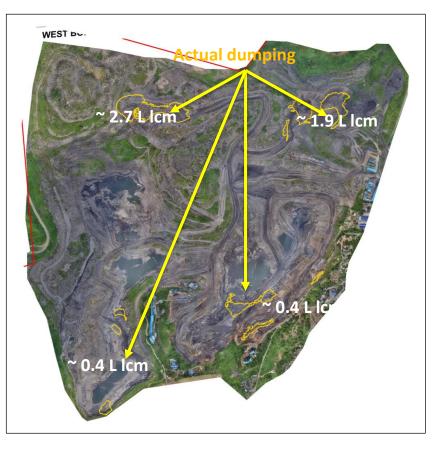

* Swell Factor – 20%M

Particulars	Volume (cum)
Excavated OB Volume (BCM)	5,59,885
Excavated OB Volume (LCM)	<mark>6,71,862</mark>
Dumped Volume - P1 (LCM)	92,099
Dumped Volume - P2 (LCM)	2,00,382
Dumped Volume - P3 (LCM)	1,419
Dumped Volume - P4 (LCM)	2,333
Dumped Volume - P5 (LCM)	2,68,157
Dumped Volume - P6 (LCM)	10,846
Dumped Volume - P7 (LCM)	7,651
Dumped Volume - P8 (LCM)	8,750
Dumped Volume - P9 (LCM)	31,641
Dumped Volume - P10 (LCM)	21,030
Total Dumped Volume (LCM)	<mark>6,44,308</mark>

A difference of about 1.28 lakh cum in OB is observed between the excavated vs dumped volume

Data Comparison Analysis of FMS vs Drone Survey

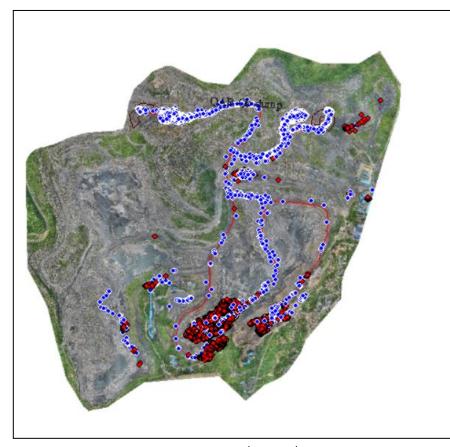




FMS data captured from $13^{th} - 30^{th}$ September. Blue dots represent location of material dumped during the period

Drone data analysis from 1st – 30th September. Polygons represent dumping area during the period

Dumping done in haul roads are often not captured through drone survey due to small change in Z value. There is lot dumping happening in undesignated places.

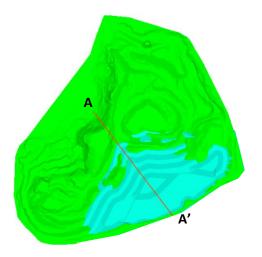


Waste Vol. generated 7.0 L lcm

Waste Vol. dumped 5.4 L lcm

Data Comparison Analysis of FMS vs Drone Survey




FMS data captured from $13^{th} - 30^{th}$ September. Blue dots represent location of material dumped during the period

Drone data analysis from $1^{st} - 30^{th}$ September. Polygons represent dumping area during the period

Dumping done in haul roads are often not captured through drone survey due to small change in Z value. There is lot dumping happening in undesignated places.

Dump Sections

- 1. Very easy to monitor compliance and mine profile
- 2. Can easily monitor plan vs actual
- 3. Transparency in volume measurements with proof that cannot be manipulated
- 4. Resource model get updated every month with actual ground profile
- 5. Stock reconciliation becomes easy with verifiable records
- 6. Planning mine sump location and capacity
- 7. Remote inspection of mine from anywhere
- 8. Shift supervisor and HEMM operators get a better view of the mine
- 9. Improving mine productivity with better haul road and dump planning
- 10. Mine owners can use the technology for evaluating the performance of the MDO
- 11.MDOs can use it for improving mine safety, compliance and productivity

Mine Reclamation

VeAlsoMakeTomorrow