APPLICATIONS OF GEODESY IN Rejuvenation & Management of Fresh water system

BY

DR. S.K. SINGH PROJECT DIRECTOR SURVEY OF INDIA

GRAVITY MEASUREMENTS FOR GWS

Traces of Land Subsidence by Levelling

Digital Elevation Model & Its Uses

- It is a quantified representation of terrain, i.e. an elevation map.
- It gives an improved understanding and information in hydrological, geological, geomorphological, climatological and biological applications.
- It helps in improving the environmental information in planning and decision making processes.
- Earth surface (& biophysical) processes depend on topography / elevation
- **DEM** is an important data source for terrain analysis.
- ✓ Various terrain variables can be derived from a DEM:
- Slope steepness,
- Slope form,
- Slope aspect
- Internal relief, etc.

36

25

13

SOURCES OF DEM

Contour and Stream line Data

CONVERSION OF ELLIPSOIDAL TO ORTHOMETRIC HEIGHT

STOKES' FORMULA

• Stokes' formula states that geoidal height and gravity anomaly at any point on the Earth's surface are related as:

$$N(\theta,\lambda) = \frac{R}{4\pi\gamma} \iint_{\sigma} \Delta g(\theta,\lambda) S(\psi) d\sigma$$

Stokes' original theory is based on the assumptions:

- **1. Earth mass equals that of reference ellipsoid.**
- 2. Geoid potential equals ellipsoid surface potential.
- **3. The ellipsoid is geocentric.**
- 4. Gravity data are available over the entire earth.
- 5. No masses exist external to geoid.

NMCG- PROJECT IN SURVEY OF INDIA

Project Area

- Total Area ≈ 43,084 km² along Ganga
- Fresh Survey & Mapping for ≈22892 km² area will be undertaken for generation of DEM, Ortho-Rectified Image (ORI)
- Balance area of 19107 km² will be covered under NHP project

DEM CREATION

Data acquisition using suitable sensors on Airborne Platform for generation of high resolution DEM and ORI

Development of Geoid Model for Project Area Gravity Observation

High Precision

Levelling

GNSS Observation

Field Plan for Development of Geoid Model

Sl no	Field Work	Total Quantum	Covered under NHP	To be covered under NMCG	Propose d Deploy ment	Time Line
1	Gravity Observation	5000 Points	2500 Points	2500 Points	3 Teams	8 Months
2	lligh Precision Levelling	37000 Lin Km	12000 Lim Km	25000 Lin Km	38 Teams	6 Months
3	GNSS Observation	600 points	350 points	250 points	5 Teams	6 Months

GEOID MODEL FOR NHP PROJECT

CONCLUSION

- Obtaining physical heights of points from GPS measurements using a precise geoid model in the region of study is the most advantages solution.
- A precise geoid model meant for routine applications of geodesy and surveying
- Geoid models play an important role in deriving flood plain maps because water flows downhill relative to the undulating geoid surface.
- Results have shown that the Gravity measurements are a promising new hydrological tool to monitor the hydrological systems effectively.

