

i 24-26 August 2021

💡 HICC Hyderabad, India

CLICK TO KNOW MORE

ROLE OF SMART METERING IN ELECTRICAL UTILITY

KULDIP KAUL CONSULTANT WORLD BANK

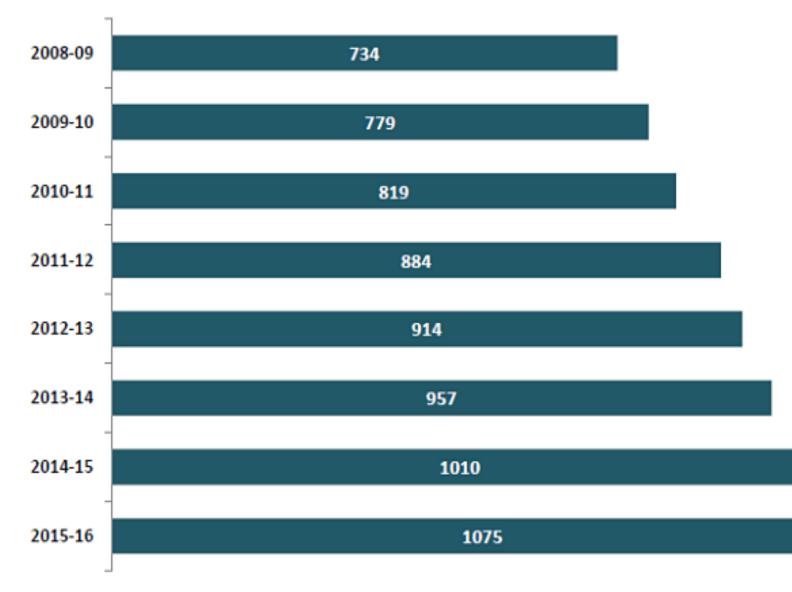
POWER SECTOR GLANCE -INDIA

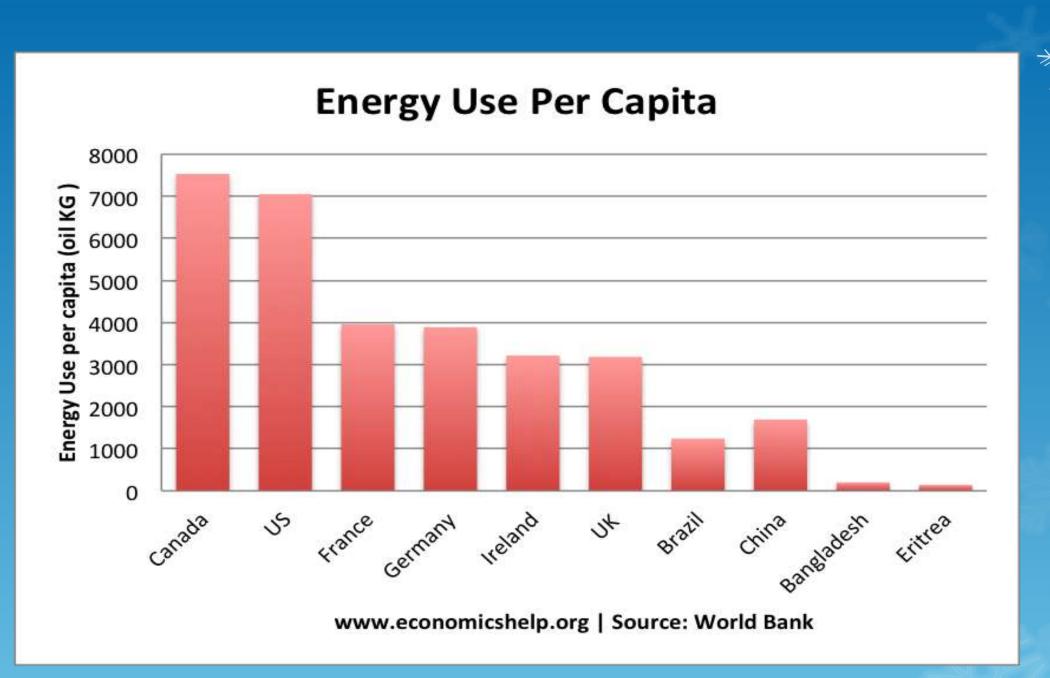
₽ •	
A	

Sector	MW	% of Total
State Sector	83,922	24.3%
Central Sector	103,030	29.8%
Private Sector	159,096	45.0%
Total	3,46,048	
Fuel	MW	% of Total
Total Thermal	2,21,768	64.1%
Coal	1,95,993	56.6%
Gas	24,937	7.2%
Oil	838	0.2%
Hydro (Renewable)	45,487	13.1%
Nuclear	6,780	2.0%
RES* (MNRE)	72,013	20.8%
Tota	1 346,048	

Distribution is the most important link in the entire power sector value chain. As the only interface between utilities and consumers, it is the cash register for the entire sector. Strengthening of sub-transmission and distribution networks in the urban areas.

- Metering of distribution transformers / feeders / consumers in the urban area.
- > IT enablement of distribution sector and strengthening of distribution network.
- ▶ India is the 3rd largest producer of electricity in the world.
- > The world loses \$89.3 billion annually through power theft.
- ▶ India loses US\$ 10- 15 billion annually.





Per Capita Electricity Consumption in India (in kWh)

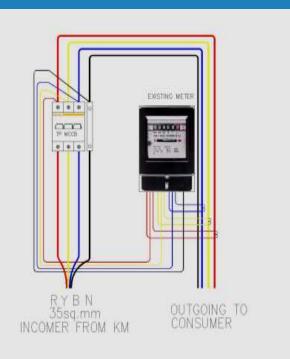
METERS

- > The smart meter is an electrometer that measures electricity consumption by time repetition.
- The merit of these meters is that they send and receive (information / commands) to and from the main center

The Electromechanical Meters

- Cannot detect or record any tampering attempt.
- Cannot see any obvious damage save in location

TAMPERING WITH ELECTROMECHANICAL METERS


Changing connection by opening / closing the lid without any evidence

- Putting a strong magnet to stop / tamper with the work of the meter.
- Inserting a metallic object / pin in meter to stop spinning.

TAMPERING WITH ELECTROMECHANICAL METERS

- > Raising Voltage Terminal.
- Shortening connections Current (Transformer (CT)
- Reversing Connection of Current Transformer (CT) single phase / three-phase

THE SMART METERS

- > Time-Based Tariff (Multi-tariff).
- Consumption Statements to Subscriber and Corporation.
- > Net metering.
- Notice of Current Outage/Restoring
- Electricity Current Disconnect/Re-Connect
- Load Determination for Demand Response (DR)
- Monitoring Electricity Current Quality
- Detection of Tampering/Theft of Electricity

THE SMART METERS

- > All smart meters are shut down by the Corporation
- > Any attempt to change plug in needs opening the meter cover.

DETECTION IN THE SYSTEM

OPENING LID

		X	Occurred	Event Type	Component Id	Device Id
Event type	TERMINAL_COVER_0 +		2015-09-27 04:12:34.000	TERMINAL_COVER_OPENED	1369	13630285
			2015-09-16 08:38:22.000	TERMINAL_COVER_OPENED	10057	13626079
			2015-09-16 08:38:21.000	TERMINAL_COVER_OPENED	10057	13626079
			2015-09-16 04:12:34.000	TERMINAL_COVER_OPENED	1369	13630285

LEAKAGE PHASE

				_
×	Occurred	Event Type	Component Id	Device Id
Event type PHASE_LEAKAGE	2015-09-11 21:05:34.000	PHASE_LEAKAGE	12347	13690485
	2015-09-10 23:33:10.000	PHASE_LEAKAGE	13139	13691134
	2015-09-05 09:19:08.000	PHASE_LEAKAGE	8338	13691401
	2015-09-05 09:19:07.000	PHASE_LEAKAGE	8341	13691463
	2015-08-30 11:33:11.000	PHASE_LEAKAGE	313	13641436

DETECTION IN THE SYSTEM

REVERSING SPINNING

·		1				
	X	1	Occurred	Event Type	Component Id	Device Id
Event type PHASE_ROTATION	•		2015-10-04 00:27:39.000	PHASE_ROTATION	1413	13630270
			2015-10-04 00:00:51.000	PHASE_ROTATION	2784	13638291
			2015-10-04 00:00:44.000	PHASE_ROTATION	1413	13630270
			2015-10-03 23:51:01.000	PHASE_ROTATION	1413	13630270

ELECTRICITY OUTAGE

		x	Occurred	Event Type	Component Id	Device Id
Event type	POWER_FAILURE -		2015-10-03 23:31:26.000	POWER_FAILURE	3140	13659129
			2015-10-03 00:18:36.000	POWER_FAILURE	8271	13630607
			2015-10-02 22:29:26.000	POWER_FAILURE	10818	13627586
			2015-10-02 22:29:26.000	POWER_FAILURE	10820	13627588
			2015-10-02 22:29:26.000	POWER FAILURE	10819	13627587

DETECTION IN METER SCREEN

Serial Reverse

Voltages and currents

 $\begin{array}{c} L_1 \quad L_2 \quad L_3 \\ I_1 \quad I_2 \quad I_3 \end{array}$

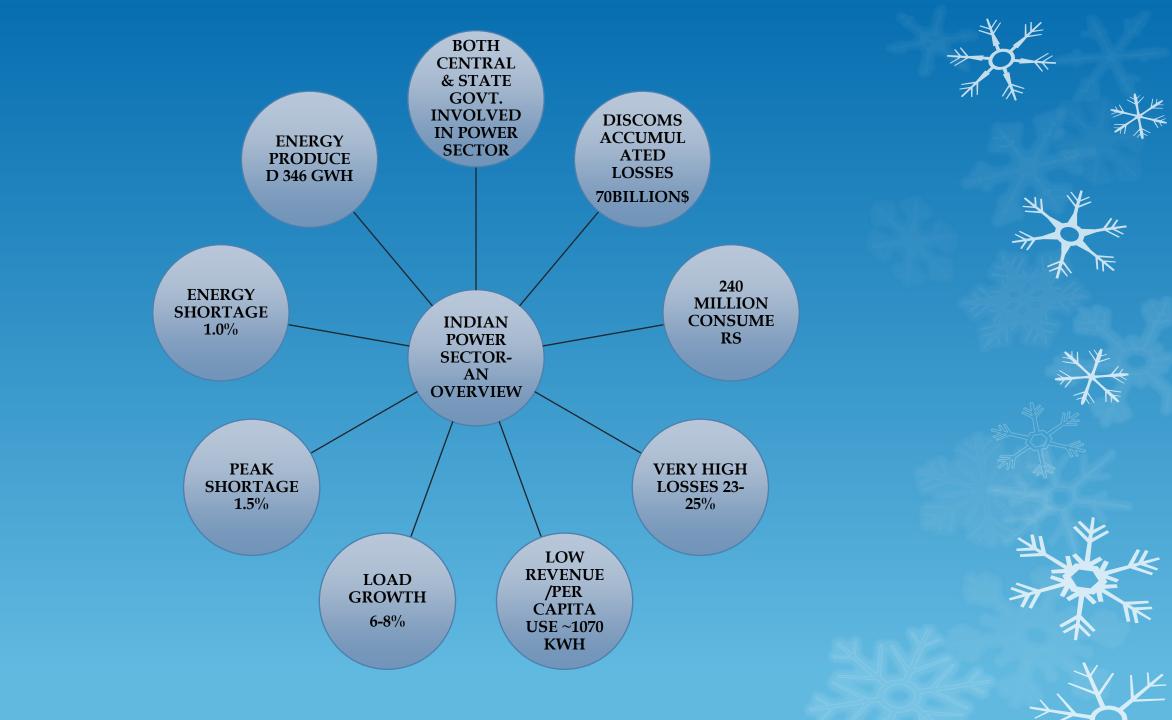
Presence of phase voltages (L₁, L₂, L₃) and phase currents (I₁, I₂, I₃). The symbols L₁, L₂, L₃ flash if the phase sequence is reversed. The correct phase sequence (clockwise or counter-clockwise) can be parameterised. The current symbols Ix appear if the power of the cor-

responding phase exceeds the creep threshold.

11 12

Negative Energy Direction (Reversed Contact)

Symbol I₃ flashes: Negative energy direction in this phase Warning symbol can flash


Meter Terminal Removal Detection

Event	Display	Symbol	
Terminal cover removed	Selected arrow is blinking.		
Main cover opened	Selected arrow is lit.	•	

INDIAN DISCOM STORY

Positives: Early adapters of electronic meters for all segments. Meters with high accuracy and tamper detection capability

Could not appreciate

- Changes required in Discom processes to convert data to business decisions
- > Many did not build computing and IT system and support team
- Indian power system conditions. Surges, spikes, over voltage, high temperature, poor installation
- ➤Social side of power theft
- Lagging :Moving in circles on meter data collection

Impact

- > No details around the drivers and variability of energy loss
- Outcome, no real benefits out of installing electronic meters for several Discoms

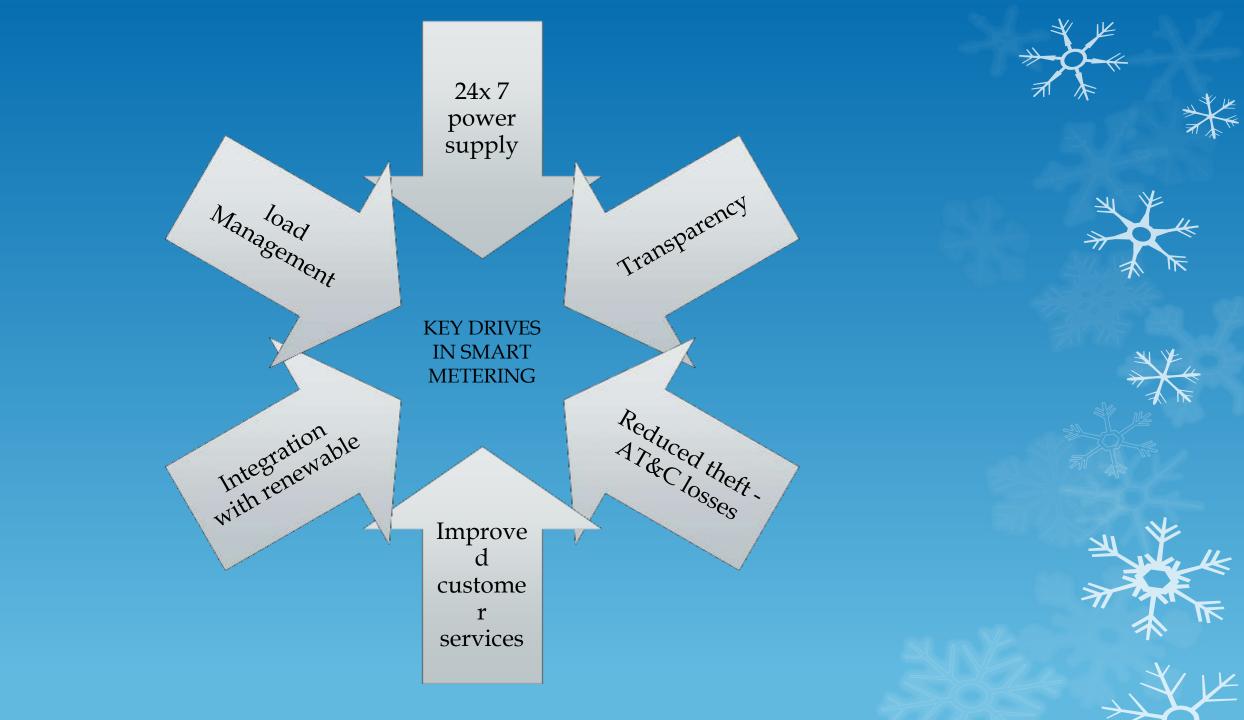
At par with global technological developments. World's first smart meter jointly developed in India in 1988.

World leaders in addressing Tamper & fraud issues.

Comprehensive design and manufacturing capability in India : Around 25-30 million per year.

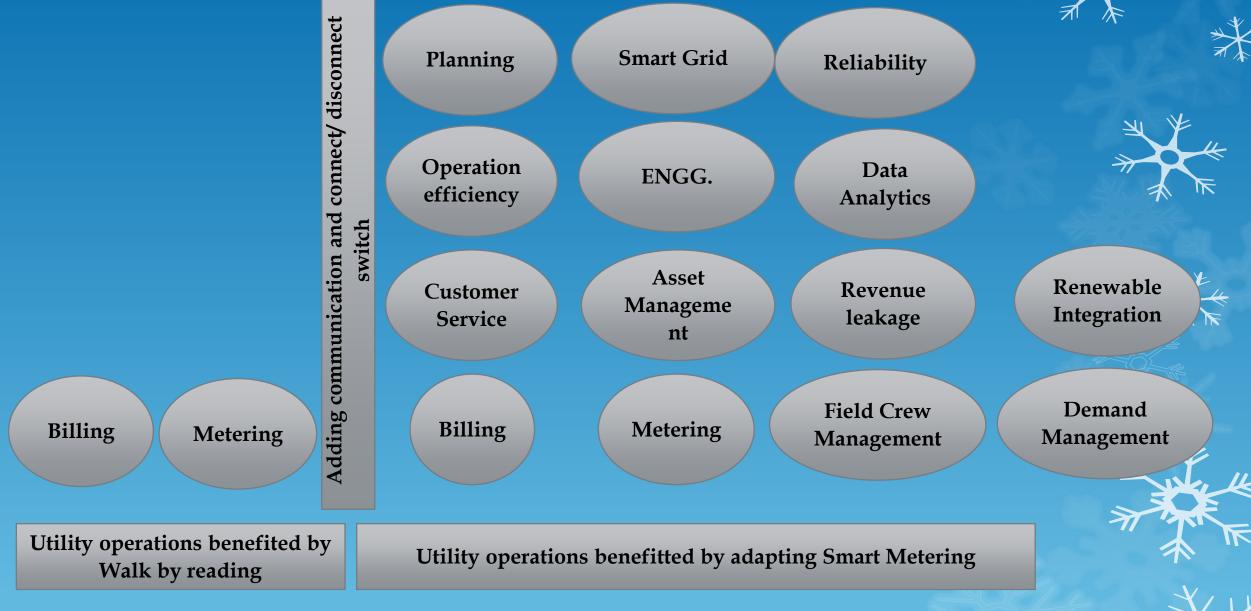
Indian companies are ready with smart meters and have implemented AMI solutions in Developed and Developing economies. Smart meters exported out of India.

Around 1/3rd of global "Smart Meter"/Smart technologies design/Engg. is based in India.


Around 700k meters with switches deployed, began a decade ago in the country.

Around 5 million meters with various communication links working. Bulk supply points success.

Discoms experienced mixed success. few really utilised the data. System integration challenges faced.



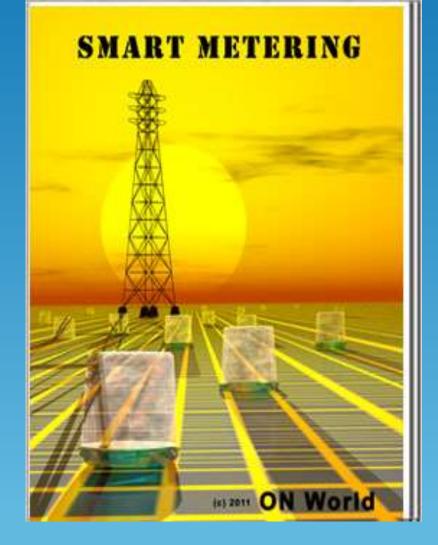
VALUE DELIVERY FROM SMART METER

TECHNOLOGY ALONE CANNOT SOLVE PROBLEMS

People, processes and technology must come together

Consider value delivered rather than cost alone

People Dedicated IT team People with good analytical ability Keeping abreast with technology Technology Cost effectiveness Total cost of ownership Sociology of technology


Results

Processes Simple & effective Transparency in service levels Creating multiple payment option Customer education

THANK YOU

